First Year Test Exam, 2018 Ramsaday College, Amta, Howrah Subject: Chemistry Honours Paper-IIA Full Marks: 50 Time: 2 hrs CHT-11a Unit-I

Answer any three questions

1.a. Mention the limitations of Bohr's theory of atomic structure and discuss the Sommerfield's extension on it. 3

b. Explain the significance of different m_l values corresponding to l = 1. 2

2.a. The average nuclear binding energy in ${}^{235}{}_{92}$ U and its fission products are 7.6 MeV and 8.5 MeV respectively. Calculate the energy liberated in the fission of 0.5 kg of ${}^{235}{}_{92}$ U. 3

b. Determine the ground state term symbol of Co^{2+} . 2.

3.a. Explain the shapes of s and p orbitals in light of their angular functions. 3

b. Give two examples of the application of radioactive isotopes in the study of structure determination and medical diagnosis. 2

4.a. Calculate the maximum kinetic energy of the β^{-} particle emitted in the radioactive decay of ⁶He. Assume that the β^{-} has its maximum energy when no other emission accompanies the process. 3

(Given: mass of electron = 0.00055 a.m.u, nuclidic mass of He⁶ and Li⁶ are 6.01889 and 6.01512 a.m.u respectively.)

b. The slow neutrons are better projectiles compared to the fast neutrons in the nuclear fission of ${}^{235}_{92}$ U-why?

5.a. Find out the radii of first and second Bohr Orbits of Be^{3+} ion.(Given: Radius of H atom is 0.529 A). 3

b. State Hund's rule of maximum multiplicity. Calculate the exchange energy for d⁶ system. 2

Unit-II

Answer any two questions

6.a. Electronegativity varies with hybridization of orbitals and oxidation number of the elementsexplain with examples. 3

b. Account for the trend in melting points (°C):

Zn(419.5), Cd(320.8), Hg(-38.9). 2

7.a. Justify the following data : 3

2

Elements	1 st Ionization energy (kJ mol ⁻¹)	2 nd Ionization energy(kJ mol ⁻¹)
N	1403	2856
0	1314	3388

b. Account for the electron affinity (eV) change in the following pair:

C(1.26), N(-0.07).

8.a. During Mn²⁺ formation from Mn electron loss takes place from 4s orbital rather 3d orbital –Explain.
3

b. Atomic radii of Nb and Ta are almost identical but that of Cs is larger than Rb-Explain. 2

CHT-11b

Unit-I

Answer any three questions

9.a. Differentiate between equivalent and non-equivalent hybrid orbitals with specific examples of each. 3

b. Arrange and explain the solubility order of silver halides in aqueous solution. 2

10.a. Using VSEPR theory, establish the shape of the following:

i) IOF_3 ii) XeF_5^+ iii) ICl_4^+ 3

b. Explain the trend of thermal stability of alkaline earth metal sulphates with the help of thermochemical cycle. 2

11.a. In spite of the fact that the hypothetical $NaCl_2$ is expected to have higher lattice energy as compared to NaCl, it does not exist-Explain. 3

b. Draw the possible resonance structure of ClO_4^- and predict the most stable one. 2

12.a.Derive Born-Lande expression for Lattice energy of NaCl crystal. 3

b. Dipole moment of HBr is 2.60×10^{-30} C.m and interatomic distance is 1.41A°. Calculate the partial charge on the bonded atoms and find out percent ionic character. [e = 1.60×10^{-19} C] 2

13.a.What are the stoichiometric defects found in ionic crystals? Explain with examples. How do such defects the density of the crystals? 3

b. Give reasons why ZnCl₂ is soluble in organic solvents while MgCl₂ is not soluble. 2

Unit-II

Answer any two questions

14.a. Comment (with reason) on the change in acidity by adding

i) SbF₅ in anhydrous HF. ii) BiN in liquid NH₃ iii) CuSO₄ in aqueous solution of (NH₄)₂SO₄.

b. Calculate pKa values of H₃PO₃ and HClO₄ using Pauling rule. 2

15.a. What are super acids? How is the acidity of such solutions measured? Explain with an example. 3

b. What do you mean by acid-base indicator? Elucidate with phenolphthalein. 2

16.a. Show the Lewis acidity order of the compounds BX_3 and SiX_4 (X = F, Cl, Br). Give reasons. 3

b. Why do Ca, Al, Ni are found as carbonate, oxide and sulphide respectively in nature? 2